
Volume 157B, number 5,6 PHYSICS LETTERS 25 July 1985 

B O U N D A R Y  E F F E C T S  
AND I N T E R P L A Y  B E T W E E N  S P O N T A N E O U S  AND A N O M A L O U S  BREAKING OF  PARITY 
IN O D D  D I M E N S I O N S  

E.R. NISSIMOV and S.J. PACHEVA 

Institute of Nuclear Research and Nuclear Energy, Boulevard Lenin 72, 1784 Sofia, Bulgaria 

Received 5 March 1985; revised manuscript received 11 April 1985 

Eta-function regularization of odd-dimensional fermionic determinants in the presence of nonvanishing background gauge 
field-strengths at euclidean space-time infinity yields both anomalous and spontaneous violation of parity. The competitive 
contributions of the latter to the magnitude of induced currents and charges in a static or constant uniform background are 
calculated. 

1. Some time ago Polyakov [1] proposed a general formula for a gauge-invariant regularization of  D-dimen- 
sional euclidean fermionic determinants (one-loop effective actions) for arbitrary Dirac operators, whose spectrum 
is not symmetric around ?, = 0, in terms of  the spectral asymmetry measuring rl-invariant of  Atiyah, Patodi and 
SInger [2] (see also ref. [3]): 

Nf  In d e t [ - i ~ ( A ,  ~)] = -~Nf In det[$2(A,  ~)] - -~irrNf n$[A,  ~ ] ,  (1) 

In det[~2(A, ~)] = - ; dr r -1 Tr R (exp [-r~ '2(A,  ~)])  = - ( d ] d s )  [~2(A,~)(s ) Is=0, 
0 

(2) 

ny/[A, ~ol = f dX sign(X) TrR [~o~ (A,¢)(X)] = ; dr(~rr) -1/2 Tr R {~(A, ~o) expt-1"~2(A, ~o)]). (3) 
- - o o  0 

Here the following notations are used: ~(A, ~o) = 7u [au + iAu(x)] + ~o(x), {Tu, % )  = -2~uv, 7~ = -Tu, Au(x) = 
TaAau(x), ( T  a) (a = 0, 1 .. . . .  n 2 - 1) are the hermitian generators o f G  = U(n), ~0(x) = ~01(x) + 75¢2(x ) (for odd 
D ~02-0) ;x  E RD;Nf denotes the number of  fermion flavors (i.e. d//(x),/= 1, ...,Nf);50 ~ (A,~o)0,;x, x ' )  is the ker- 
nel of  the spectral density of  ~(A, ~o), (~(A,  ~o) = f ~, ~ ~ (A, ¢)(;k) dX) and TrR [ ] indicates volume (infrared) 
regularized operator trace. In (1 ) - (3 )  standard boundary conditions on Au(x) and on ~o(x) are assumed: 

Au(x) = - ig - l ( f f ) (aug) ( f f )  + O ( I x l - l - e ) ,  ~o(x) = O(Ixl  - l - e )  for Ixl -~oo,  

~ = ( x / I x l ) E S  D-1 g : sD-1 -~ O(n) 

In case of  (4) TrR [ 

(4) 

] may be defined by subtraction of  the corresponding operator at A# = ~ = 0 , t .  Eq. (2) rep- 

, t  More generally, regularized operator traces are deemed as TrR[ ] = Tr[xv( )], where xV denotes the multiplication operator 
by the characteristic function of a compact subset V c R D. At the end of the computations for the induced current J~(x) (6) 
we shall take V -~ R D. 
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resents the usual ~-function regularization [4] of the determinant of the nonnegative operator ~2(A, ~o). The r/4n- 
variant of ~(A, ~0) (3) is odd under parity transformation in any odd D: 

~oP(x) = --i71 ~ (xP), AP(x) = (A O, - a  1, . . . ,AD-1)(xP), tPP(x) = --~01 (xP), 

~(A P, ~0P)(X, X') = 71 ~(A, ~0)(x P, x 'P) 71 , ~ (AP, 9P)(k; X, X') = --Vl ~0 ~ (A, ~o)(--)k; X P, X 'P) "Y1, 

X P -- (X 0, --X 1 , X 2 ..... xD-1) , (5) 

and, therefore, its appearance in (1) gives rise to a parity-violating anomaly (PVA) in odd space-time dimensions 
[5-7] .  The scalar I-Iiggs field ,p(x) does not contribute to the PVA in odd D, so we take henceforth ~0(x) = 0. Also, 
recall that a fermion mass tem~ explicitly breaks parity (5): 

m(~  P ~ P)(x) = - m  ( ~ ) ( x P ) .  (5') 

The aim of the present note is to study the induced fermion current in the presence of a background Au(x ) 

~ ( x )  = <~j(x) Ta(- i~u)  ¢Jj(x)> = -i[6/6A~(x)] Nf  In det[- i~(A)]  , (6) 

where Au(x) obeys boundary conditions more general than (4) and an improved version of (1) (see (10), (12) be- 
low) will be invoked so as to properly incorporate all nonperturbative parity-breaking effects (anomalous and 
spontaneous) ,2. This will lead to some substantial amendments of results obtained in refs. [5,7]. 

2. As a consequence of the Atiyah-Patodi-Singer index theorem [2], in the case of boundary conditions (4) 
(which allow compactification of R D to S O) one has 

r/~ [A] = ( - 1 )  (/9+1)/2 2W(~  [.41 + B[A] , (7) 

where I4/(~ ) [A] denotes the well-known odd-dimensional (and parity-odd) Chern-Simons term (e.g. ref. [8]) and 
B[A] is twice the index of an appropriate (D+ 1)(=even).dimensional Dirac operator. 

Formula (1) together with (7) was further analyzed in ref. [9]. In order to account for the renormalization am- 
biguity, a f'mite counterterm Sc.t. [A] should in general be added to the right-hand side of (1) obeying the follow- 
ing properties: 

(a) Sc.t. [A] must be a local gauge-invariant functional ofAu(x ) of dimension D. 
(b) Sc.t. [A] must be chosen in such a way as to eventually cancel the PVA coming from r/~[A] in (1). 
Accounting for the well-known properties of WC(~ [A] and of the topological charge N D [g] of gauge transfor- 

mations g(x) E U(n): 

w ~  ) [Aq -- W w)  ChS t ChS [A] + NO [g],  

u o  = - 1))t ( D r ) - 1 , . ,  f d O x  trt -la.,g) ... (8a) 

N D [g] E Z if IrD(U(n)) = Z ,  i.e. for odd D < 2n,  

= 0 if ¢tD(U(n))~Z, i.e. for oddD > 2n,  (8b) 

where Agu(x) = g- l(x)[Au(x)  - i~u] g(x), rtD(G ) denotes the Dth homotopy group of G and Z is the group of in- 

,2 Let us recall the basic difference between spontaneous and anomalous symmetry breaking. Spontaneous breaking takes place 
due to the degeneracy of the ground state for certain subspaces of the coupling parameter (or of the external background 
field-) space and the symmetry may be restored for other subspaees of the latter. On the contrary, anomalous breaking is an 
unavoidable violation of the classical symmetry for any (nonzero) values of the coupling parameters (or of the external fields). 
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tegers, one easily finds the following two alternatives: 
(i) If either lrD(U(n)) 4= Z (i.e. D > 2n) or if IrD(U(n)) = Z (i.e. D < 2n) andNf = even simultaneously: 

NfSc.t. [A] = irr(--1)(D-1)/2Nf w(cD)s [A], (9) 

and then formula (1) together with (7)-(9) reads 

Nf In det[-i~(A)] = ~Nf In det[~2(A)] - ~i~rNfB[A] . (10) 

½1rNfB[A] = 0 (mod 2rr) under the above conditions, and thus the PVA in (10) is eliminated. 
(ii) If IrD(U(n)) = Z (i.e. D < 2n) and Nf = odd simultaneously, the choice (9) is unacceptable since it breaks 

gauge invariance except for the U(1) subgroup, cf. (8). Therefore, in this case 

Sat . [.4] = ilr(-1) (D-1)/2 Wc(Ds ) [Aa=0] , (i 1) 

Nf In det[-i~(A)] = -~Nf In det[p2(A)] - -~irrNfB[A] + in(--1)(D-I)/2Nfw(cD)s [zi], (12) 

Aa~O(x), .4u(x) being the abelian and the SU(n) parts of Au(x), respectively. Hence a PVA is inavoidable in (12). 

3. Let us now consider the ~/-function regularization of the odd-D fermionic determinants (10), (12) in the case 
of nonvanishing boundary conditions more general than (4) for the background field strength F~(A) = auAv - 
avA u + i[Au,A v] 

Fm,(A) ~ F~z, --k 0 (in certain or in all directions in RD). (13) 

In particular, (13) means that Au(x) is just an external background (not quantized) field. (13) will now lead to 
nontrivial boundary effects in (10), (12), (6). Namely, B[A] in (7) can no longer be identified as twice the index 
of a certain (D + O-dimensional Dirac operator (boundary conditions (13) do not allow compactification of R D 
anymore). Under (13) B[A] becomes a nontrivial smoothly varying nonlocal functional of Au(x ). The latter pro- 
duces an additional parity breaking not present in (10), (12) under standard boundary conditions (4) and which 
cannot be compensated by a local Sc.t. [.4]. 

From the heat kernel representation of~7~[A] (3) and from (7) one easily finds 

[6/6aau(x)] B [A] = 2i tr[TaTu ~ ]~ (A)(0;x, x)] , (14) 

where the formula 

exp[--r~2(A)l(x,x)~.Ot/Ol/2~yl(A)(O;x,x ) for r ~ o o  (15) 

was used. Unlike (4) where 

C~]~(A)(0; x, x') = 6 (0) II0~(A)(x, x') = ~ ,  if X = 0 is a discrete eigenvalue, 

= 0 ,  otherwise, (16a) 

(el. e.g. ref. [9]) with II0~(A')(x, x') being the kernel of the zero mode projector, in the case of (13) we have in 
general 

5 ~ ~,(A)(0;x, x) :/: 0 (<=o), (16b) 

Note that h = 0 in (16b) belongs to the absolutely continuous part of the spectrum of ~(A) (not a zero eigenvalue). 
Let us emphasize that (16b), accounting for (16a), yields in odd D spontaneous (not anomalous) breaking of parity 
in the presence of the backgroundAtt(x ). This can also be inferred from 
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<~k}(x)=-- lim tr[(m+i~](A))-l(x,x)] 
m--~0 

= i f dr exp ( - rm 2) trI{~(A) exp[-r~]2(A)l}(x, x)] 
m ~ 0  0 

-- lira m -1 ; da exp(-o 0 t r [ exp [ - (~m 2) ~2(A)]] 
m--,0 0 

= i / dXP(I/X) tr[ 9 ~  (A)(?,; x, x)] -- rr sign(m) tr[ 9 ~  (,4)(0; x, x)] , (17) 

where once again (15) was used. According to (5), (5'), the second term in the last equality (17) represents spon- 
taneous breakdown (while the first one is parity-covariant). Eq. (17) completely parallels the criterion for spon- 
taneous chiral symmetry breaking in the presence of a background Au(x ) in even D [ 10]. 

In terms of the induced current (6), accounting for (10), (12), (14), we get 

J~(x) =Nf  ; dr tr[TaTu(~](A) exp [-r]~2(A)] ]-(x, x)] - irrNf tr[Ta'lug~l(A)(O;x, x)l 
0 

+ 0 ,  if conditions (i) hold, 

+ ~Nf(-1) (D-l)[2 [(-~(D - 1))! (4zr)(D-1)/2l-leuu I ... ,D-1 tr[Tapm u= "'" P U D - 2 U D - - , ] '  

if conditions (ii) hold. (18) 

Here/~uv = Fur(A) denotes the SU(n) part of Fur(A). Let us point out that (18) could equally well be derived by 
means of the Pauli-ViUars regularization 

(~(x) Ta(-iTu)~(x))= lira ( Mli~ trlTaTu{[~l(A) - im]-a(x,x) - [~(A)-iM]-I(x,x)}]) 
m--,0 I ** 

+ i[8/6Aau(x)] Sc.t. [,4] . 

4. There exist two important particular cases of nontrivial boundary conditions (13) when 5 a $ (,4)(0;x, x) can 
be explicitly found. 

First, consider the case of static Au(x) with zero electric field F0k = 0 (k = 1, ..., D - 1); then the gauge A0 = 0 
may be imposed. For static fields we have 

9~,D(0;X, x) = (2rr)-lIIg D-1 (x, x ) ,  (19) 

]~D = ]~(A) = 70a0 + ]~D- 1, ~]D_l=Tk[ak+iAk(X)], 

Ak(x ) =-ih(~)(akh)(~)+ O(Ixl - l - e )  for Ixl ~*0 ,  h: S D - 2 ~ U ( n ) ,  (20) 

and II~ D- '  (x, x') denotes the kernel of the zero mode projector of the ( D -  1)(= even).dimensional Dirac opera- 
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tor ~D-1- Remembering that ),0(odd D) = i(--1)(D+1)/275 (even D -  1), 3'k(odd D) = ~/k(even D -  1), and substi- 
tuting (19) into (18) an entirely parity-odd result for J~0(x) follows (we confine ourselves with the singlet current, 
i.e. for a = 0): 

NflJ~0=0(x) = ( -1 )  (/9+1)/2 ~ index(~'D_l;X), if conditions ( i )hold ,  

l r  ,-,(D+l)/2r, rr,a=0. ( 1)(D-I)/2 
~--1) "~(D-1)/EW , X) + -- ~ [C(D_I)/2(F; x) - index(~D_ 1 ;x)] , 

if conditions (ii) hold. (21) 

Here index (JTD-1;x) = tr[3,SrI0 ~0-1 (x, x)] means the index density of ~D-1, F ~  0 is the abelian part ofFer(A), 
and C(D_ I )[ 2(F; x) denotes the well-known Chern characteristic class ("instanton" number Of A k(x)) in D - 1 
(=even) dimensions (e.g. ref. [8]). Also, note that the last line in the second equality (21) is just (up to a sign) 
Ok(~(x)(--i3'k) 75 ~k(x)), the divergence of the ( D -  1)-dirnensional induced axial current. Thus, accounting for the 
standard index theorem (e.g. ref. [8]): 

f dn-lx index(]~D_l; x ) = f dn-lx C(D_I)/2(F;x ) =ND-2[h] 

(h is the same as in (20)), (21) yields the following result for the induced charge: 

Qind = f  dD-lx J~=O(x) = Nf( -1)  (D+1)/2 ½ND-2 [h] (for conditions (i)), 

0 (G = SU(n)) (for conditions (ii)). (22) 

From (22) and (8b) we conclude that (recall D = odd): 
(a) For G = U(n) Qind is fractional (half-integer) only when D = 2n + 1 and Nf = odd. 
(b) For G = U(n) Qind is a (nonzero) integer when 3 ~< D ~< 2n + 1 and Nf = even. 
(c) For G = SU(n) Qind = 0 identically when either D :~ 2n + 1 and Nf = odd or D ~> 2n + 3 and Nf = even. 
Next, consider another particular case of (13) in D = 3: 
Fuv(A(x)) ~F~v = constant, uniformly sufficiently fast at Ixl 400. For the spectral density at X = 0 one has 

~](A)(O;x,x) = [U_+ ~ ( A a s ) ( 0  ) U_+*](x, x ) ,  ~j~(AaS)(O;x,x ') = (167r2)-leu~x(--iTu) F~x (23) 

(of. e.g. ref. [11]), where Fuv(A as) - F~v and U. denote the wave operators (in the sense of scattering theory) for 
H = ~2(A) and H 0 = ]g2(Aas) (H and H 0 being the total and "free" quantum mechanical hamiltonians, respective- 
ly). Substituting (23) into (18) we obtain: 

Nflj~(x) = n(8~r)-l e~xvF~v'b wa~b (x) + parity-normal terms, (24a) 

either for G = U(1) or for G = SU(n), n/> 2, andNf = even; 

N f  1j~(x) = N f  1J~(x) (eq. (24a)) - n ( 8 , ) -  1 etzvxFax(A (x)), (24b) 

for G = SU(n), n/> 2, and Nf = odd; 

wa~br(x) = -(2n)-l  tr[TaTla ( f d3y U._ (x, y) ) TbT~ ( f d3y Ug(y, x) )I 

= ~uK8 ab + nonlocal functional of (A~(x) -Aa~(x)). 

(24a) differs from the result found for G = U(1) in refs. [5,7] where the local form n(87r)-leuvxFvx(A(x)) for 
the corresponding parity-breaking term (i.e. a wouldbe PVA) was claimed. The present analysis shows that the 
parity-odd term in (24a) is entirely due to the spontaneous breakdown of parity through (23), (18), i.e. it does 
not represent a PVA. In particular, it vanishes in the case of the standard boundary conditions (4) and, therefore, 
it cannot be a local functional of Au(x ). 
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To recapitulate, we have shown that  a consistent determination of  induced fermion currents and charges in the 
presence of  background fields in odd D (formulae (18), (21), (22), (24)) must be based on formulae (10), (12) for 
the fermionic determinant which correctly includes both the effect of  the spectral asymmetry of  the Dirac opera- 
tor, i.e. the parity-violating anomaly and the additional spontaneous pari ty breakdown, as well as the possibili ty 
of  adding appropriate t'mite local counterterms eventually cancelling the anomaly. 

We are deeply indebted to A.M. Polyakov for enlightening and instructive discussions concerning the ~?-function 
regularization of  fermionic determinants. 
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